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Abstract. The numerical simulation of plasmas is a critical tool for inertial confinement fusion
(ICF). We have been working to improve the predictive capability of a continuum laser plasma
interaction code pF3d, which couples a continuum hydrodynamic model of an unmagnetized
plasma to paraxial wave equations modeling the laser light. Advanced numerical techniques
such as local mesh refinement, multigrid, and multifluid Godunov methods have been adapted
and applied to nonlinear heat conduction and to multifluid plasma models. We describe these
algorithms and briefly demonstrate their capabilities.

1. Introduction
In laser-induced inertial confinement fusion (ICF), laser irradiation is used to implode a fuel
capsule, generating the high energy density required to initiate fusion. The laser irradiation
creates a high temperature plasma that interacts in nonlinear ways with the laser light. In
addition to refraction by density gradients, a variety of parametric instabilities (parametric in
the light amplitude) exist that convert laser energy into internal plasma waves and scattered
electromagnetic waves. Since the irradiation of the fuel pellet requires symmetry for proper
implosion and since stray laser light can damage optical systems, understanding the laser plasma
interaction (LPI) is of critical importance in ICF experiments.

In support of the National Ignition Facility (NIF) [1], a parallel LPI code pF3d [2] was
developed by physicists to help understand the complex phenomena involved. This code couples
a nonlinear fluid model of the plasma with a paraxial model of the laser light and other stimulated
electromagnetic waves. For full simulation of ignition-scale geometries and times, it is impractical
to use traditional Particle-In-Cell (PIC) methods. However, a variety of reduced models resulting
from PIC simulations on more practicable space-time “patches” are implemented in pF3d to
approximate non-equilibrium kinetic effects.

In previous work [3, 4], we have applied adaptive mesh refinement and other advanced
numerical techniques to laser plasma interaction models similar to those used in pF3d. Drawing
on the knowledge gained in these investigations, we have been working with physicists to improve
the physical and numerical models used in their code. In this paper, we will describe the
nonlinear, local electron thermal transport model and the nonlinear, multifluid model that we
have developed to extend the capabilities of pF3d, and we will show some results of this work
relevant to the programmatic work in support of NIF.



2. Laser Plasma Model
A fluid plasma model consists of a system of mass, momentum, and energy equations for each
electron and ion species, coupled through a Lorentz force term to Maxwell’s equations. However,
suitable approximations lead to a much simpler hydrodynamic model in which bulk motion is due
to ion motion and only the internal energies of the ion and electron species must be considered
independently. For clarity and brevity, we present a simplified form of the governing equations
used in the pF3d code. Details of the full model can be found in [2, 5].

In our fluid model, the plasma state is completely described by six primitive variables: an ion
mass density ρ(x, t), the hydrodynamic velocity vector v(x, t), and the ion and electron pressures
pi(x, t) and pe(x, t), respectively. The plasma system consists of five equations expressing mass,
momentum, and energy balances coupled to an evolution equation for one of the internal energies:

∂tρ+∇ · (ρv) = 0, (1a)
∂t (ρv) +∇ · (ρv ⊗ v) +∇p = fp, (1b)
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= v · fp −∇ · q +Q, (1c)

3/2 [∂tpi +∇ · (piv)] + pi∇ · v = 0, (1d)

The ion number density is related to the ion mass density by the ion mass, ρ = mini, and by
quasi-neutrality, the electron number density is ne = Zni, where Z is the charge state. The
total pressure, by Dalton’s law, is p = pi + pe, and the ideal gas law relates the pressures to the
temperatures, for example, pe = neTe. We note that, in ICF LPI applications, 0 < pi/p� 1, so
numerically it is better conditioned to solve for pi instead of pe.

For unbounded domains spanning thousands of light wavelengths, numerical integration of the
Maxwell or Helmholtz equations is exceedingly expensive. Instead, we model light waves using
one-way paraxial wave equations, which are an approximate factorization of the wave equation
along a dominant direction of propagation [6]. For example, for light propagating primarily in the
z-direction, we assume a time-harmonic vector potential A(x, t) = Re{Â(x, t) exp (−iωt+ iϕ)}
with a local phase factor ϕ(z, t) = k

∫ z
z0
η0(ζ, t)dζ, where ω and k are the light frequency and

wavenumber, respectively, Â(x, t) is a complex-valued envelope, η0(z, t) =
√

1− n̄e(z, t)/nc > 0
is a transverse-averaged refractive index, and nc is the critical density of the plasma. In this
case, the paraxial equation has the pseudo-differential form∂t + cη0∂z −
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 Â = −iα δnÂ, (2)

where c = ω/k is the speed of light, δn(x, t) = ne(x, t) − n̄e(z, t), ν(ne, T e) is the collisional
absorption rate, and α is a real, constant factor. It should be noted that the integrating factor
ϕ reduces the magnitude of the phase variation in the resulting envelope, thereby reducing the
computational cost. The pF3d code uses Fourier spectral methods to advance several coupled
paraxial equations of the form (2) that model the incident laser as well as stimulated light and
plasma waves [5].

We have included only terms on the right-hand side of (1) that are relevant for this discussion.
The electron heat conduction is represented symbolically by −∇ · q; in the Spitzer-Härm
approximation, the heat conduction explicitly takes this divergence form with a nonlinear heat
flux vector q(ne, Te). The ponderomotive force fp ∝ −ne∇|Â|2 in (1b) represents a “light
pressure” exerted on the plasma through the fast oscillation of electrons in the light waves.
Similarly, the absorption term Q ∝ ν|Â|2 in (1c) represents the heating of the electrons by
inverse Bremsstrahlung absorption of the laser light.



In the pF3d code, the coupled, nonlinear system (1) and (2) is advanced explicitly through a
sequence of operator-split steps. In the basic order, the light is advanced, followed by electron
heat conduction, and then the remaining hydrodynamic terms are advanced. Typically, the light
and heat conduction steps are sub-cycled together because of their tighter coupling and faster
physics. This process formally should converge with at best a first-order rate in time. Working
to improve algorithms within this framework, we have have sought to develop algorithms which
independently achieve second-order, unless doing so would incur significant additional expense.

3. Two-Level, Multigrid Spitzer-Härm Electron Heat Conduction
Originally, the pF3d LPI code was developed to study parametric instabilities due to wavelength-
scale structure within smoothed laser beams. Beam conditioning, such as smoothing, reduces
spatial coherence in the beam but promotes better beam propagation in plasma for high intensity
lasers because it reduces beam spray due to self-focusing. Over time, pF3d has been applied to
problems of increasing size, scaling up from tens to tens of thousands of wavelengths. While
periodic transverse domains and a nonlocal, linear electron heat transfer model [7] were sufficient
for earlier studies, models more applicable to larger-scale problems were needed.

In response, we have developed a local, nonlinear Spitzer-Härm electron heat conduction
model for the pF3d code. This model makes use of a two-level, static mesh refinement that
provides an extended domain on which heat, deposited through absorption, is conducted. The
two-level composite solution is advanced through a Fast Adaptive Composite (FAC) algorithm
that uses a scalable, geometric multigrid algorithm as the solver.

3.1. Spitzer-Härm Model
In the electron heat conduction step, the governing equation is

3
2
ne
∂Te

∂t
= ∇ · q +Q. (3)

The advective and pressure work terms as well as the laser propagation are handled in a separate
step, thus ne and Q do not vary in time for this temperature update step. The Spitzer-Härm
heat flux [8] has the form q = −κ∇Te, where κ = βT

5/2
e / ln(Λ) is the classical, nonlinear

Spitzer-Härm thermal conductivity. The symbol ln(Λ) symbolically represents the contribution
of temperature- and density-dependent electron-ion and electron-electron Coulomb Logarithms,
and β is a material-dependent constant.

Local Spitzer-Härm heat transfer models the electron energy transport as a diffusion process,
which is problematic when the heat flux is greater than its physical limit. We employ a standard
flux limiter to constrain the transport, limiting the magnitude of the heat flux to a fraction of
the local free-streaming electron energy flux, neTeve.

3.2. Discretization
Consider a three-dimensional, uniform grid with cells of size ∆x × ∆y × ∆z. Let the grid
cell centers be indexed by 3-tuples (i, j, k), and let the cell faces be indexed by (i ± 1/2, j, k),
(i, j±1/2, k) and (i, j, k±1/2), in the x, y and z directions, respectively. We advance over a time
∆t ≡ tn+1 − tnand denote by T ≡ {T̄n+1

i,j,k } the vector of unknown temperatures. Integrating (3)
over cell (i, j, k) and using a backward Euler temporal differencing, the discrete system for the
cell-averaged electron temperature can be written as
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which is approximate to second order in the spatial mesh size. The backward Euler temporal
discretization, while exceedingly stable, is only first-order accurate, but the splitting employed
in pF3d limits the temporal convergence rate to first-order regardless, so we have opted for the
simplicity and efficiency of this method.

The face-averaged heat flux quantities are approximated using averages and differences of the
cell-centered quantities at the appropriate time step. For example,

(qx)n+1
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2
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2
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i,j,k

∆x
. (5)

In practice, considerable computation time can be saved, without loss of accuracy, if the Coulomb
logarithms in the conductivity are computed at cell centers and averaged to the interfaces. This
reduces by a factor of three the number of Coulomb logarithm calculations, each of which involves
expensive transcendental and algebraic function evaluations.

By Newton’s method, the solution of (4) is approximated by a sequence of iterates obtained
from a linearization of F :

T (m+1) ≡ T (m) + δT (m), (6)

where the update δT (m) is the solution of the linear system

∂TF (T (m))δT (m) = −F (T (m)). (7)

The exact Jacobian ∂TF is not essential for the convergence of the Newton iteration, so
we approximate the Jacobian by neglecting terms involving temperature derivatives of the
conductivity. Such approximation does not affect the accuracy of the nonlinear solution, only
(possibly) the convergence rate of (6). For the system (4), this approximate Jacobian matrix
J(T (m)) has a nine-stripe form corresponding to the centered-differenced diffusion operator.

3.3. Two-Level Mesh Refinement
We define a coarsely gridded collar mesh surrounding the standard pF3d simulation grid that
allows the electron temperature to be computed on a larger domain. This provides the ability
to specify the artificial transverse boundary condition in an effective far-field, rather than at the
transverse boundaries of the standard pF3d mesh. The latter is problematic when the conduction
is large enough to cause the boundary temperature to change with time. By using a coarser
collar grid, the cost of the two-level approach is mitigated.

Let Gf denote a standard pF3d mesh, and let Gc denote a coarser, uniform mesh over a
larger domain. Gf is embedded as a locally refined subgrid in Gc, as shown in Figure 3.3 for a
two-dimensional example. Denote by Ic

f (Gf ) the restriction of Gf to Gc; the collar grid is the
complement Gc \ Ic

f (Gf ). We discretize (3) on the composite grid GC ≡ Gf ∪ (Gc \ Ic
f (Gf )).

Since the grids Gf and Gc are each uniform, the spatial discretization (4) can be applied in
the interiors of these grids. The change in grid resolution at the interface between Gf and the
collar grid requires a nonuniform differencing stencil in the composite grid cells adjacent to the
interface. The modified stencils are defined using slave nodes, denoted by ‘◦’ in Figure 3.3, at
which values are determined by quadratic interpolation from neighboring coarse grid nodes. The
interpolated values provide Dirichlet conditions for the discrete conduction operator on Gf .

Application of Newton iteration to solve the composite grid analog of the nonlinear system (4)
requires the solution of the composite grid Jacobian system

JC(T
(m)
C )δT (m)

C = −FC(T (m)
C ). (8)

To accomplish this, we employ the Fast Adaptive Composite (FAC) algorithm [9, 10], where for
each Newton iterate, the linearized system (8) on the composite grid is itself solved iteratively.
The procedure for each iteration of the FAC algorithm is:



a a a a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a a a a a a

q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

6

y

- z

GC = {�, •}
Gf = {•}
Gc = {�, �}

Ic
f (Gf ) = {�}
If

c (Gc) = {◦}

Figure 1. Relationships between
grids are shown. The composite
grid GC is comprised of all of the
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the fine grid, the interior boundary
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(◦) by interpolating nearby coarse
cell values (If

c ).

(i) restrict the linear system residual on the composite grid GC to the coarse grid Gc;
(ii) solve the linear system on the coarse grid Gc;
(iii) restrict the linear system residual on the composite grid GC , with corrections on the fine

grid boundary due to the coarse grid solve, to the fine grid Gf ;
(iv) solve the linear system on the fine grid Gf with the Dirichlet conditions at the slave nodes;

(v) update the composite iterative solution δT (m,l+1)
C .

This process is continued until the RMS norm of the composite residual is below some tolerance.

3.4. Multigrid
The LMG geometric multigrid algorithm [11], with an adaptive schedule, is used for the linear
system solves on Gf and Gc. Multigrid algorithms employ a hierarchy of grids, generated by
successively coarsening the initial grid by a factor of two in each coordinate direction until
a coarsest grid is obtained. On each grid level, a coarsened Jacobian operator is created by
averaging coefficients from the next finer level. The grid levels and coarsened operators thereby
obtained are used to damp error components at different wavelengths via an iterative process.
Starting with the finest grid, one or two pre-smoothing iterations of red-black Gauss-Seidel are
performed to relax the solution error locally. The resulting residuals are averaged to the next
coarser level, where one or more smoothing sweeps are performed to reduce the error components
at this coarser resolution. Eventually, the residual is averaged to the coarsest grid, where a direct
Gaussian elimination solve is performed. Corrections to the solution are then interpolated from
coarser levels to the finer levels, again performing one or more post-smoothing sweeps on each
level. A single traversal of the hierarchy in this way constitutes one V-cycle. We have found
that two pre- and post-smoothing sweeps per level is sufficient in application.

It can be proved that, under conditions satisfied in our implementation, the number of V-
cycles required to achieve a fixed level of accuracy is asymptotically independent of the mesh
size. This implies that the algorithm will scale well as the problem size is increased along with
the number of processors, since the dominant cost is the scalable smoothing sweeps.

Since the composite Jacobian system (8) is solved within a Newton iteration, it usually makes
little sense to set tight linear solver tolerances (i.e., small in value), since this wastes effort if
the Newton iteration has not converged. For this Spitzer-Härm problem, we have found that a
better strategy is to set the linear solve tolerance as large as possible, thereby reducing the cost
of the multigrid solve, while still converging the outer Newton iteration in several iterations.
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Figure 2. Spitzer-Härm results at t = 2.89 ps at z = Lz/2 = 128λ for a fine mesh resolution
of (nx, ny, nz) = (256, 256, 64), fine-to-coarse refinement ratios of 4:1 in each dimension, and a
coarse mesh spatial extent of 3Lx×3Ly×Lz. Shown are Te in keV on the composite grid GC , with
the fine grid boundary outlined, and laser intensity I/I0 on the fine grid Gf , I0 = 2(1015) W/cm2.

0

Y
 (w

av
el

en
gt

hs
)

−5000

5000
8.0705

4

6

8

2

0

I/I0

0

Y
 (w

av
el

en
gt

hs
)

−5000

5000

Z (wavelengths)

0 5000 10000 15000 20000
0.01

1.6764

1.0

1.5

0.5

Te

Figure 3. Laser intensity I/I0 (I0 =
2(1015) W/cm2) and electron temperature
Te in keV for NEL CO2 gaspipe simulations.
Results at t = 3.5 ns for a fine mesh
resolution of (ny, nz) = (10240, 5632), fine-
to-coarse refinement ratios of 32:1 in y and
z, respectively, and a coarse mesh with
twice the spatial extent of the fine mesh in
the y direction. The fine mesh simulation
domain was 10240λ×22528λ, and each run
took 240 to 360 hours on 64 processors of
an Itanium2 Linux cluster.

3.5. Numerical Results
To demonstrate the capability of the two-level Spitzer-Härm algorithm, we present in Figure 2
cross-sections at best-focus of the electron temperature and laser light for a diamond cross section
f/4 random-phase-plate smoothed beam of wavelength λ = 0.351 µm. The initial, quiescent
plasma conditions are ne = 0.06nc, Te = 500 eV, and Ti = 0.5Te. For this small spot-size
(32λ), the small plasma volume within the beam heats rapidly. Note that the coarse/fine mesh
boundary is not visible in the temperature contours. Furthermore, little imprint of the beam
structure is visible within temperature field because of the rapid heat transfer rate. The use of
a two-level grid allows the temperature on the fine grid boundary to adjust more realistically
than would a Dirichlet condition imposed on that same boundary.

A second, NIF-relevant example of the Spitzer-Härm algorithm is shown in Figure 3. These
2D simulations were made in support of a NIF Early Light (NEL) gaspipe experiment to evaluate
the effects of beam-smoothing options on the “burn through” of the laser. Cooler plasma absorbs
more laser energy, so the burn-through rate is dependent on the details of the plasma heating.
Shown are the fine-grid electron temperature and corresponding laser intensities. Due to the
large computational domain, full 3D simulations were not feasible, but to account better for the



3D energy loss, a variation of the FAC algorithm was employed, using a 3D coarse grid, and
cylindrically rotating the heat source from the 2D grid onto the 3D grid. It became apparent
that the temperature was sufficiently smooth that it was unnecessary to compute the heat
conduction on the fine grid, so we subsequently solved for Te on the coarse grid and interpolated
this solution up to the fine grid. This procedure resulted in a significant cost reduction of
the heat conduction step. The simulation results reproduced the laser transmission trends of
the experiments and identified laser filamentation as the primary mechanism responsible for
differences between different beam-smoothing techniques.

4. Nonlinear, Multifluid Hydrodynamics
Within the hohlraum target of indirect-drive ICF experiments, the plasma does not have a
uniform composition. Distinct regions of low- and high-Z plasmas are generated as the hohlraum
and its contents are ionized. To accommodate the simulation needs of the LLNL LPI theorists,
we have developed an efficient, nonlinear, multifluid hydrodynamics capability for pF3d. Using
volume fractions to track an arbitrary number of fluids, a careful splitting of the physics leads
to a nonlinear hyperbolic system that can be solved effectively using a high-resolution Godunov
scheme. We discuss the algorithm and present some preliminary simulation results.

4.1. Multifluid Model
We consider a plasma with N distinct material regions. In the hydrodynamic step, which
is operationally split from the ponderomotive forcing and electron heat conduction, we
simultaneously integrate a nonlinear hyperbolic subsystem of equations, that is, the left-hand
side of (1), and augment this with (N−1) scalar advection equations for volume fractions. These
may be written in the conservative form

∂t (ρψm) +∇ · (ρψmv) = 0, m = 1, 2, . . . , N − 1, (9)

where ψm(x, t) is the volume fraction of the m-th fluid. The N -th volume fraction is computed
from the consistency constraint

∑N
m=1 ψm = 1. Locally, mass and ionization state are

functionals of the volume fractions, that is, volume averaged by component. For example,
Z̄ [ψm] =

∑N
m=1 ψmZ̄m, where Z̄m is the ionization state of fluid m.

An important observation is that, in the absence of forcing and diffusion terms, equations (1a)-
(1c) form a closed system independent of multifluid effects. This subsystem is, in fact, the Euler
equations expressing conservation of mass, momentum, and energy. That the core hydrodynamic
behavior can be determined independently from the ψm is a consequence of the assumption that
all species act as thermally perfect gases with γ = 5/3. As a result, this plasma fluid formulation
solved in divergence form will not suffer from the well-known pressure oscillation problem at
material interfaces [12]. The remaining two equations (1d) and (9) are necessary for other steps
in the split physics algorithm in order to distinguish between the contributions of electrons and
ions to internal energy and to distinguish between different fluid species.

An interesting wrinkle in the solution of (1) is that the ion pressure equation is inherently
in nonconservative form, yet the system admits discontinuous solutions. In [3], this equation
was discretized in nonconservative form and updated after the conservative update. However,
the eigenstructure of the coefficient matrix of the one-dimensional system ∂tu + A∂xu = 0
indicates that the ratio pi/p is preserved across acoustic waves and only changes across a linearly
degenerate wave with the flow velocity. Indeed, there is no physical mechanism, such as thermal
equilibration, in the hyperbolic subsystem of (1) capable of redistributing the internal energy
between electrons and ions, and the eigenanalysis suggests that the pressure ratio pi/p should
obey a scalar advection equation. Formal manipulation of (1d) leads to an equation for the



pressure ratio in divergence form:

∂t

(
ρi
pi

p

)
+∇ ·

(
ρi
pi

p
v
)

= 0. (10)

With the ion pressure equation in this form, the entire system comprised of the left-hand sides
of (1) and (9) is a hyperbolic system of conservation laws.

4.2. Discretization
In [3], we made use of a coupled conservative update that corrects for multidimensional
effects [13, 14]. This method requires more computational time and memory than a method
based on standard dimensional operator splitting, but produces only marginally better results for
most LPI applications. We therefore have opted to use the simpler dimensional split approach,
implemented using the standard second-order interleaving of steps [15]. Accordingly, we will
describe the hyperbolic advancement algorithm that is applied dimension by dimension.

In one-dimension, the system of conservation laws can be written in the compact form

∂tu + ∂xf = 0, (11)

where u = (ρi, ρiv, (5p + ρi|v|2)/2, ρpi/p, ρψ)T is the state vector of conserved variables, f is
the flux vector, and ψ ≡ (ψ1, ψ2, . . . , ψN−1). A finite-volume form of this equation is solved
that guarantees convergence to weak solutions (e.g., shock waves). Integrating (11) over the
space-time domain [tn, tn+1] and cell (i, j, k), one obtains the conservative update

ūn+1
ijk = ūn

ijk −
∆t
∆x

(
f̂n+1/2
i+1/2 − f̂n+1/2

i−1/2

)
jk
, (12)

where ūijk represents a cell-averaged state vector and f̂n+1/2
i±1/2,j,k represents time- and face-averaged

flux vectors. This expression simply states that the change in the cell average value is due to the
average fluxes into and out of the cell. The accuracy of the average fluxes dictates the accuracy
of the algorithm, and we approximate these fluxes using the Godunov approach.

The original Godunov method [16] solves Riemann problems, using the piecewise-constant
cell averages as initial data, to approximate the flux vector at each cell interface. This
naturally and correctly provides a coupled, upwinded discretization for the system. However,
the exact Riemann solution is expensive to construct, and much of the resulting detail is
unimportant. Instead, approximate Riemann solvers are preferred, and we use the HLLC
Riemann solver [17, 18], where the solution to the Riemann problem is modeled as four constant
states [uL,u∗L,u

∗
R,uR] separated by three discontinuous waves propagating from the origin with

speeds cL < c∗ < cR. Consistency with the governing equation and physical solution provide
constraints that determine u∗Land u∗R, and the extension to our system including the pressure
ratio and volume fraction equations is straight-forward. There exists a choice of the signal speeds
{cL, c∗, cR} that guarantees a upwind, positivity-preserving update [19, 20], and we use these
speeds to ensure the positivity of density and pressure from the hyperbolic advancement.

The Godunov method using piecewise constant data in each cell is only first-order accurate
in space and time. To increase the spatial accuracy, Van Leer [21] devised an approach to
reconstruct the solution slope from the cell averages. To preserve monotonicity, these slopes are
limited based on the local solution behavior, and the scheme reverts to first-order in the vicinity
of discontinuities but achieves second-order in smooth regions.

We adopt this approach and reconstruct on primitive variables w = (ρi,v, p, pi,ψ)T , as these
are the variables that should not exhibit numerical oscillations. In the x-direction, for cell
(i, j, k), we compute a limited average slope based on the two one-sided differences:

σx
ijk = limavg (wi+1,j,k −wi,j,k,wi,j,k −wi−1,j,k) /∆x, (13)
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Figure 4. Multifluid calculation demonstrat-
ing constancy of total pressure across ma-
terial interface. Two-dimensional results at
t = 464 ps on a square domain of length 1024λ
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tion. The initial plasma composition was Au
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erywhere except at y∗ = z∗ = 341λ, where p
and Te were set to ten times the background
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where the average is applied component by component to the primitive state vector w. We
generally use the double minmod limiter [21], which chooses the smallest of the centered slope
and twice the one-sided slopes or zero if the one-sided slopes are of opposite sign.

The slope reconstruction only increases the spatial accuracy of the numerical fluxes. To
increase the temporal accuracy, one must better approximate the solution to the initial problem
with piecewise linear initial data, as opposed to piecewise constant initial data. Hancock [22]
devised a simpler predictor-corrector approach that is used often in practice.

Dimension-by-dimension, we advance the solution in each cell over a half time-step using
the primitive equations, that is ∂tw + A(w)∂xw = 0. Piecewise linear reconstruction on these
predicted cell-centered values produces approximate predicted values at the cell interfaces:

wn+1/2
i±1/2,j,k,∓ = wn

ijk −
[
∆t
2

A (wijk)∓
∆x
2

I
] (
σx

i,j,k

)n
, (14)

where (+/−) corresponds to the right/left of the interface. Note that it is sufficient to use the
old slopes instead of recomputing them after the predictor step. Predicted interface values (14),
used as inputs to the Riemann solver, produce high-resolution interface fluxes.

4.3. Numerical Results
A simple multifluid result of an acoustic pulse in a uniform flow is shown in Figure 4. Here, an
initial spike in Te and p in an Au plasma drives an acoustic wave, which is transmitted with little
reflection through the material interface (near z = 680λ) into a CH plasma with a faster sound
speed. Note that the total pressure remains constant across the moving material interface.

Results of a recent NIF-relevant calculation made possible by the multifluid hydrodynamics
solver are shown in Figure 5. The initial data are taken from a radiation hydrodynamics
simulation of an indirect-drive target (hohlraum) near the wall, where a region of Au plasma
propagates into an He plasma. The incident laser generates ion acoustic waves that reflect the
light in a process known as stimulated Brillouin scattering. Most of the backscatter occurs in
the vicinity of the material interface where the volume fraction of Au is over 0.5. Note that the
irregular material boundary is an artifact of the zoning in the radiation hydrodynamics data.

5. Conclusions
Working with domain application scientists, we are involved in an on-going process to improve
the algorithms in and, thus, the applicability of their parallel LPI code pF3d. We have
developed an efficient, two-level, nonlinear electron heat conduction capability, making use of our
knowledge of adaptive mesh refinement, FAC, and multigrid methods. In addition, through a
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Figure 5. Multifluid hohlraum calculation corresponding to Au and He plasmas. Volume
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ISBS/I0 at t = 76.67 ps are plotted for a domain of size 320λ×3200λ×2048λ (λ = 0.351µm),
using a resolution of 128×1280×768. The simulation was run on 2048 processors of BlueGene/L.

careful structuring of the governing equations, we have constructed a robust, efficient, nonlinear
multifluid algorithm based on high-resolution Godunov methods. Both technologies are allowing
physicists to study problems of practical relevance for the ICF efforts at LLNL. Nevertheless,
due to the wide range of spatial and temporal scales, computational LPI is still in need of major
algorithmic improvements, in order to simulate routinely at NIF-relevant engineering scales.
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